South East Asian J. Math. & Math. Sc. Vol.6 No.1(2007), pp.11–16

ON THE (P) SUMMABILITY OF DOUBLE FOURIER SERIES

Satish Chandra and Manisha Sharma*

Department of Mathematics S.M. Post-Graduate College, Chandausi-202412, India

*Indian Institute of Management, Ahmedabad-380015, India

(Received: October 30, 2004)

Abstract: In this paper, we have proved a theorem on (P) summability of double Fourier series which generalizes various known results.

Keywords and Phrases: (P) summability, double Fourier series **2000 AMS Subject Classification:** 40C05, 40D05, 40E05, 40F05, 40G05

1. Definitions and Notations

Let $\{S_{m,n}\}$ be the sequence of mn^{th} partial sums of the series $\sum u_{m,n}$. Let $\{p_m\}$ and $\{q_n\}$ be sequences of non-negative numbers such that the series

$$p(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} p_m q_n x^m y^n$$
 (1.1)

converges for all x and y, 0 < x < 1, 0 < y < 1 and $p(x,y) \uparrow \infty$ as $x \uparrow 1$ and $y \uparrow 1$.

If

$$p(x,y) = \frac{1}{p(x,y)} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} s_{m,n} p_m q_n x^m y^n \to S$$
 (1.2)

as $x \uparrow 1$ and $y \uparrow 1$, then the series $\sum u_{m,n}$ is said to be (P)-summable to S [5].

Tf

$$L(x,y) = \frac{1}{|\log(1-x)| |\log(1-y)|} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{s_{m,n} x^m y^n}{mn} \to S$$
 (1.3)

as $x \uparrow 1$ and $y \uparrow 1$, then the series $\sum u_{mn}$ is said to be L-summable to S [8].

In particular if $p_m = \frac{1}{m}$ and $q_n = \frac{1}{n}$, the (P)-summability reduces to (L) summability.